Alzheimer's disease: an update of the roles of receptors, astrocytes and primary cilia (review).

نویسندگان

  • Ubaldo Armato
  • Balu Chakravarthy
  • Raffaella Pacchiana
  • James F Whitfield
چکیده

The pathophysiological mechanisms underlying the onset and inexorable progression of the late‑onset form of Alzheimer's disease (AD) are still the object of controversy. This review takes stock of some most recent advancements of this field concerning the complex roles played by the amyloid‑β (Aβ)‑binding p75 neurotrophin receptor (p75NTR) and calcium‑sensing receptor (CaSR) and by the primary cilia in AD. Apart from their physiological roles, p75NTR is more intensely expressed in the hippocampus of human AD brains and Aβ‑bound p75NTR triggers cell death, whereas Aβ‑bound CaSR signalling induces the de novo synthesis and release of nitric oxide (NO), vascular endothelial growth factor (VEGF)‑A and Aβ peptides (Aβs), particularly on the part of normal adult human astrocytes. The latter effect could significantly increase the pool of Aβ‑ and NO‑producing nerve cells favouring the progressive spread of a self‑sustaining and self‑reinforcing 'infectious' mechanism of neural and vascular (i.e. blood-brain barrier) cell damage. Interestingly, primary cilia concentrate p75NTR receptors in their membranes and are abnormally structured/damaged in transgenic (Tg) AD‑model mice, which could impact on the adult neurogenesis occurring in the dentate gyrus's subgranular zone (SGZ) that is necessary for new memory encoding, thereby favouring typical AD cognitive decline. Altogether, these findings may pave the way to novel therapeutic approaches to AD, particularly in its mild cognitive impairment (MCI) and pre‑MCI stages of development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ionotropic Glutamate Receptors and their Role in Neurological Diseases

Glutamate is extensively and relatively uniformly distributed in the central nervous system (CNS) and its effects mediated by two distinct groups of receptors including Ionotropic and metabotropic glutamate receptors. Concentration of glutamate in the nervous system is much higher than in other tissues. Glutamate receptors play an important role in synaptic transmission, neural plasticity and n...

متن کامل

A Closer Look to the Most Frequent Travelers’ Disease: A Systematic Update on Travelers’ Diarrhea

The present study, wants to highlight and review the most prevalent disease amongst travelers. In the current review, an updated review regarding epidemiology, involved pathogens, and a brief review of current evidence-based guidelines for prevention and treatment of this disease are provided. A distinguishing feature of the current review is the discussion of the impacts of irritable bowel syn...

متن کامل

Neuroinflammation in Alzheimer's disease: chemokines produced by astrocytes and chemokine receptors.

Chemokines secreted by astrocytes play multiple roles in the pathology of Alzheimer's disease, a chronic inflammation disorder of central nervous system. The level of chemokines in serum, cerebrospinal fluid and brain tissue and their receptors both significantly changed in patients with Alzheimer's disease. In this review, we briefly summarized the involvement of astrocytes and chemokines in A...

متن کامل

P 107: P2x7 Receptors: as a Novel Targets for the Treatment of Neuroinflammation

P2x7 receptors are Purineric receptors that are extracellular ATP-gated ion channel. These receptors require high dose or prolonged exposure to ATP for initial activation. The Activation of these receptors facilitates the formation of inflammasome which activates caspase 1. The P20 and P10 subunits of caspase 1 form active enzyme that then releases active interleukin (IL)-1 β and IL-18, tu...

متن کامل

The recent development in synthesis and pharmacological evaluation of small molecule to treat Alzheimer's diseases: A review

Alzheimer's disease is a neurological disorder in which the death of brain cells causes memory loss and cognitive decline. A neurodegenerative type of dementia, the disease starts mild and gets progressively worse. Like all types of dementia, Alzheimer's is caused by brain cell death. The most common presentation marking Alzheimer's dementia is where symptoms of memory loss are the most promine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of molecular medicine

دوره 31 1  شماره 

صفحات  -

تاریخ انتشار 2013